State of Indiana DMPP 2020 - Specifications
Message Header Processing in the Law Enforcementdament using the
Datamaxx Message Processing Protocol
(DMPP-2020)

Foreword

This document is meant to offer a brief discussibthe benefits of utilizing this protocol
within Law Enforcement systems. This protocol hasrbchosen as the mechanism to
provide compliance with national standards whitogroviding an environment that is
not burdensome for regional/remote systems to imefe.

Control Terminal Agencies (CTA) within each Statesihdeploy systems that comply
with the requirements of national agencies sudd@KC and NLETS. Some of these
requirements are listed below:

Implementing a protocol that provides guaranteedsage delivery
Identification of users responsible for transadion
Ability to process transactions that meet natiatahdards

Ability to process image data

All of these requirements are implemented in thetesy with this protocol. DMPP 2020
is an application to application protocol which rardees delivery of messages. The
CTA must be able to determine the individual opmratsponsible for any message that
traverses through the system. The OpenFox™ sysse@mmemented in conjunction
with the DMPP 2020 protocol and the inclusion & tiser-id field achieves this
requirement. The system supports all standard NL&TWENCIC 2000 transactions. In
addition, the system using will also be able tacpss images. DMPP 2020 is one of the
solutions that provides the framework requiredracpss binary data.

In addition to the national standards the CTA haslaligation to provide an environment
to regional systems which is consistent and campémented with a reasonable
amount of effort while using state-of-the-art piaits and network facilities. The DMPP-
2020 protocol as implemented in the OpenFox™ systewides such an environment.

The DMP2020 portion of this document was writterCiatamaxx Applied Technologies
and describes the protocol. The remainder of tloeigent has been written by Computer
Projects of lllinois, Inc., and is meant to offarther details and message format
examples. This document will be updated at a e with specific examples for your
implementation.

MESSAGE HEADER PROCESSING IN THE LAW ENFORCEMENT
ENVIRONMENT

USING THE DATAMAXX MESSAGE PROCESSING PROTOCOL®
DMPP-2020®

Technical Specification

Published By:

DATAMAXX APPLIED TECHNOLOGIES, INC.
3780 PEDDIE DRIVE

TALLAHASSEE, FLORIDA, 32303

(850) 575-1023

http://www.datamaxx.com Revision Levels:

Revision 0, August 1996

Revision 1, October 1996

Revision 2, June 1997

Revision 3, September 1997 (Registered CopyrighX 4-624-223)
Revision 4, September 1997

Revision 5, September 1998

Revision 6, July 2000

This document contains proprietary information &nade secrets, and may only be
disclosed by written permission of Datamaxx Appliegthnologies, Inc.

"Datamaxx Message Processing Protocol" and "DMPE}2@re registered trademarks
of Datamaxx Applied Technologies, Inc. Other prdadwmmes used within this document
are the trademarks of their respective holdersaaadhereby acknowledged as such.

©1996 — 2000 DATAMAXX Applied Technologies, Inc. |Rights Reserved

No portion of this document may be reproduced, iyraeans without the express
written permission of the copyright owner.

Printed in the United States of America
Introduction.

The purpose of this paper is to define a speciboahat can be implemented to provide
robust message handling in the Law Enforcementrenment.

As the transition to modern communications prote@antinues, new problems and
challenges are presented to developers. This ecedly true with "Open Systems", in

which there are components from various vendolrsfathich must operate in harmony.

With legacy systems, one vendor had control of ggemg, from the end user keyboard
to the host system and thus could control all steats] and could implement necessary
functionality to ensure that all messages werevdedid reliably.

With "Open Systems" and diverse vendors, functiontnds to be implemented as a
series of layers, with information being passeduog down between layers.
Complicating this is that fact that the layers rbayimplemented as a series of disparate
free running processes, in which data is passekl draat forth. Thus, an application may
send data through several layers and processeswbmh it has no knowledge. Each
process or layer may acknowledge to the previoosgss or layer that the data was
successfully processed -- however error messagestan not communicated to
previous processes, the chain, and thus the otigghapplication may not be aware of an
error. Thus the need for "application to applicatior "end to end" acknowledgment.

Complicating the situation is that "Open Systems"teuly open, as they are designed to
allow easy interconnection. This immediately pr@&gboints of access that can be used
for unauthorized or abusive use of a system.

A further factor is that new protocols are "peepéer” and do not provide a continuous
status monitoring (as is the case with "mastereslaype protocols). This can lead to
situations in which an application can send a ngessaa destination that can not
process it. Since there is no immediately availabd¢us, error indications may not be
provided for several minutes (or at all) and thedseg application will not be aware of
the situation.

Consider the following scenario:

Host prepares a message for transmission.
Host passes the messages to Communications sursyst
Communications sub-system passes message to cooations controller.

Sub-system sends message immediately to destinhtibrs not aware if any
intermediate devices (e.g. bridges or routers)raygerative.

Remote communications processor receives messagmvaledges it and places it in a
buffer.

Remote application crashes before reading buffesperator powers system off.

In this scenario the host application would consttiat the messages has been correctly
processed, when indeed it was not. Furthermorey massages may have been sent and
buffered for a remote application that never preesgshem. There are also many other
potential points of failure that can leave the host state assuming a message was
delivered, when it was not actually delivered.

In order to eliminate these potential points oluiiad, a structure must be defined that can
be used universally. The approach defined hereis asMessage Header" processing to
achieve full end to end confirmation of all message

The processing strategy is known as the "Datamaggdsige Processing Protocol
(DMPP-2020®)"

Concepts

In developing the message header processing, naatyr$ were considered. These
include:

Compatibility with NCIC designs Compatibility withtate designs Full message delivery
confirmation Communications Protocol Independenpligable to all processing
platforms Programmer friendly Support for secuistgues Support for data encryption
Features can be configured to meet different requaénts Flow control is automatically
provided to avoid flooding of a target system

The design that evolved, after much research, wegihe implementation of a special
header in each message packet. This header contaitrsl fields that can be used to
provide all functionality, as needed. The headeralao be defined as "optional in order
to allow remote systems to be converted as availahther than requiring a "big bang"
conversion.

This header will be referred to as the "Extended$dge Header" throughout this paper.

A discussion of each of the concepts is warrantedrder to provide background and
rational for the design.

Compatibility with NCIC designs
This design leverages off the structure proposethi®NCIC-2000 system, in order to

reduce research and development time. It is naighoan exact copy of the NCIC
structure.

Compatibility with State designs

This design allows the Extended Message Heades fdzed in front of existing
message formats, with no requirement to changetfowmats. This alleviates the
requirement to modify existing processing applimasi

Full Message Delivery Confirmation

The Extended Message Header provide both positisdgenagative confirmation of
message delivery. For negative delivery confirnmatiaceason code is provided.

Communications Protocol Independent

Although the obvious protocol that this specifioatcan be applied to is TCP/IP, it is
actually protocol independent. It can operate onkanary transparent protocol, ranging
from serial links (e.g. mobile communications viB[@P IP packets) to mainframe
protocols (e.g., LU 6.2).

Applicable to all Processing Platforms

This design is compatible with all processing @atfs. This is achieved by careful
sizing and alignment of all data fields, in ordeawoid alignment and size specification
errors that are generated by some processors.

Programmer Friendly

The design guards against assumptions made byugacampilers. For example, some
compilers will automatically initialize data struces to null values, or just plain junk.
This can lead to subtle processing flaws. Thusgpeification does not allow any
command, directive or response code that is allvallies, and requires that all values be
verified. It is also programming language independall Extended Message Header
processing is symmetrical with respect to directiabound and outbound).

Support for Security Issues

The Extended Message Header provides for full autittetion of all connections,
including dynamic re-verification of connectionsrahdom intervals.

Support for Data Encryption
The Extended Message Header provides for full guicny of the data portion of
messages. This allows a full software solutionganbplemented, independent of all

communications hardware. Dynamic key update antralas supported.

Features can be Configured to Meet Different Rexpénts

The features can be configured to meet the needspécific system. For example, the
Extended Message Header can be implemented usavg @ it capabilities and then
more features can be activated as required.

Levels of Implementation

The specification can be implemented as "levelseofice", depending on what options
are selected. Thus it can be adapted to many eliffereeds and environments.

Flow Control

The Extended Message Header can provide a nakowmatbntrol, if desired by the
implementer.

Extended Message Header

The Extended Message Header is a structure thadaged in a cleanly delineated
message block. The general structure of the me$dageis as follows:

STAP 4 character start pattern

Block Length 32 bit signed integer (See note below)
Header Extended Message Header (Defined in Set}ion
Data Variable length data

STOP 4 character stop pattern

Note: The Block Length field encompasses the whaleket, including the STAP (Start
Pattern), Block Length field itself, Extended Mags#&leader, data (if any present) and
the STOP (Stop Pattern).

For consistency across platforms, all values inhider are stored in "Network Byte
Order". This order places the most significant biyst, descending to the least
significant byte reading to the right. This is gamy to method used on some Intel
platforms (notably the 80X6 family) and thus theplementation must handle this
situation as required.

Definitions

The "STAP" (Start Pattern) and "STOP" (Stop Pajtare currently defined as
hexadecimal patterns as follows:

STAP ff,00,aa,55 (\xff\xO0\xaa\x55)
STOP 55,aa,00,ff (\x55,\xaa,\x00,\xff)

The minimum block size is 28 characters, which @ecur when the Extended Message
Header length is 16 and there is no data preséetnfaximum block size is
2,147,483,647 (231 — 1). Thus, the value of theBloength field must never be less
than 28 or more than 2,147,483,647.

Extended Message Header Format

The Extended Header Message has the following redjformat:

Header Length- 16 bit signed integer Function Cede 16 bit signed integer
Validation Field - 32 bit unsigned integer Data gtn - 32 bit signed
integer Status Code - 16 bit signed integer Detstina - 16 bit signed
integer

The Extended Header Message has the following ogitiextension for encryption:

Length - 16 bit signed integer
Request Type - 16 bit signed integer
Key Id - 32 bit unsigned integer

In the following charts, all numbers are expresaedecimal integers. They can be
converted to other number systems (e.g., octaéry &s required. Note how the use of
zeros is consistently avoided.

Each field is discussed in detail, as follows:

Header Length

The length is a 16 bit integer that encompassdabealeader data, including the length
field. It will be either 16 or 24, depending on e or not an encryption control is
present.

Function Code

The Function Code defines the processing patheofrtessage. Currently defined values

include:

1 - Data message with no acknowledgment, finalkoloc
2 - Data message with acknowledgment, final block

3 - Data message with no acknowledgment, more bltaxkollow (See note

below)

4 - Data message with acknowledgment, more blaxksllow (See note
below)

17 - Positive acknowledgment to data message SG@adde is set to
"Successful receipt of data message")

18 - Negative acknowledgment to data message (EBraefined in the Status
Code field)

33 - Request status of system

34 - Response to status request (Status is ddfirtee Status Code field)
49 - Send Coded Message 1

50 - Send Coded Message 2

65 - Positive response to Coded Message 1

66 - Positive response to Coded Message 2

Note: Function Codes 3 and 4 are used to inditeatiethe message will be sent in
multiple blocks with Function Codes 1 and 2 usenhtlicate the last block. Each block
in such messages must use successive valuesvalitiation field.

Validation Field

This unsigned integer field defines a number thaisied to create a unique identification
for each message, and will be returned on its spmeding acknowledgment. Its format
is up to the implementer. This value may be albgeas it is not inspected but simply
returned to the requester intact.

Data Length

This field defines the length of the actual datdipa of the message. It is used for
redundancy checking. It must be zero for statusstatis response messages. The
maximum value is 2,147,483,619 (231 — 1 — 28).

Status Codes for Request Messages

This field contains the status code that can bleidse in request messages. Currently
defined values include:

01 - Message may contain binary object in Unisysad

02 - Message doesn’t contain binary object

03 - Message contains binary object in NCIC tratisadormat
04 - Message contains binary object in NCIC respdosmat
05 - Message contains binary object in DSEO-2020é

06 - Message contains binary object in Unisys farma

33 - Message may contain binary object in Unisysad

Note: Any message that can contain a binary olmpeahy of the supported formats can
contain multiple binary objects but they must alib the same format.

Status Codes for Response Messages

This field contains the status code that can hemet in responses. They should be used
only with responses -- never part of request me&ssfce., status codes are not
"piggybacked"” onto a request).

The code returned will depend on the type of regreeived, (e.g., a write request with
acknowledgment, or an explicit request for statGsirrently defined values include:

01 - Successful receipt of data message

17 - Permanent (i.e., non recoverable) error oecufe.g., disk failure)

18 - Temporary (i.e., recoverable) error occureed.(printer out of paper)
19 - Logical error occurred (e.g., too many messageeived too quickly, and
thus a queue containing acknowledgments filled up)

20 - Message length exceeds maximum, messageendiscarded

33 - Queried destination is available and ready

34 - Queried destination is available, but not ye@dg., printer has buffer
space, but is out of paper)

35 - Queried destination is not available and eatly

49 - Invalid function code received

50 - Invalid (or non-existent) destination received

51 - Invalid Extended Message Header format (ogtlenreceived

52 - Function not supported

65 - Attempt to start encryption with no key detiion

66 - Invalid encryption header format (or lengtgeived

67 - Encryption not supported.

Destination

This 16 bit integer defines a logical destinatidhis permits a packet to be addressed to
different logical units, and effectively create&chister” at a location. The actual
definition is up to the implementer and the confadion. This permits logical units to be
defined for specific purposes (e.g., a destindtoriHit Confirmation” messages), and
permits implementation of message priorities. Thkie of O is invalid. The value of "-1"
is considered a broadcast to all defined destinatio

Encryption Header Length

This 16 bit integer defines the length of the opdiloencryption header. A length of zero
is invalid.

Encryption Request Type

This 16 bit integer defines the encryption functiequested.

Currently defined values include:

1 - Start encrypting messages
2 - Stop encrypting messages
17 - Load encryption Key
18 - Clear encryption key
33 - Set key identification

Key Identification

This 32 bit integer defines the index into the kayle to locate the key to be used for
encrypting future messages.

Service Levels

The DMPP-2020™ specification allows for servicedlsv A service level defines that
functionality that has been activated for a givedmoint on a communications network.

The following service levels are defined:
Level 1 provides the functionality for handling mage header functions from 1 through
47 (as they may be defined). This functionality@npasses guaranteed delivery of

messages and full status checking, but does nieide@@uthentication or encryption.

Level 2 provides the functionality as describedével 1 and adds the functionality for
system authentication (function codes 49 throughagdhey may be defined).

Level 3 provides the functionality as describedl@vel 2 plus adds the encryption
options via the extensions for encryption.

Implementation Notes

The following notes are presented to give an intgigfio how the Extended Message
Header may be applied to various functions.

Integer Values
In this specification all integers are positiversd values, unless otherwise noted.
Destination Codes

The destination field does not have to replacetieg$eader structures. It is meant to
augment them. This technique permits many logindkuo be addressed by a single
Host address (e.g., a single TCP/IP address).€linngnates large control tables, and
their associated maintenance (e.g., holes in fileyvd he application may still process
existing headers (e.g., those used on a BiSync RI&0

Flow Control

By use of the "Write with Acknowledge" functionp¥l control may be achieved. The
application can be structured to allow any numbien@ssages to be outstanding at any
time, subject only to the limits of the receivdrthle limit is set to 1, automatic flow
control is achieved.

Keep Alive Timer

This implementation provides full keepalive suppattthe application level. A keepalive
probe is a packet with a Request Status Functide aad no data length. If an
appropriate Response to Status Request is retutrerdthe connection is intact. Note
that this can also be used to temporarily suspefiictby responding with a Status Code
34 (temporarily unavailable).

Coded Messages
Coded messages are used to authenticate connedif@isuse is specific, as follows:

A Session requesting a connection provides a predistring of data (e.g., a logical
name) and encodes it in such a way that the recearedecode it. This can be done by
using a known element (e.g., System Name, Datejitmumber, telephone number,
etc.) and encoding it using a Huffman coding, tveotencoding process. It sends it as a
Coded Message 1 Function to the receiver.

The receiving session encodes a similar string {$nahy it must be predictive) and
compares it to the received string. If a matcloisntd, a response code of 65 is sent, with
no data. If no match, the receiver is silent (W&li/the crook how he failed).

Either side of the session may send a Coded Me&seggpiest at any time. The Coded
Message 2 has a random data string as its daiamofte receiver then adds another
predictive string of data to the coded data, resdes it and returns it as a response of
code 66 to the sender.

The sender of the Coded Message 2 analyzes thenssf valid, processing continues
(there is no response). If invalid, the connecttoterminated, due to suspected invasion
of the system.

The exchange of Coded Message 2 functions may @t@my time, thus creating a”
keep-alive”, as well as continually re-authentiegtconnections.

The encoded data in the Coded Message 2 may alseebleas the encryption key, by
inserting the optional encryption header.

Encryption Functions

The encryption functions are implemented impliciliyre presence of the optional
encryption header defines an encryption functiba.Write Data function is performed
with the encryption header, and the header defirlesy load, then the data portion of the
message is assumed to be the new key. This isstenswith the concept of loading the
Coded Message 2 data as the key.

The encryption header will only require that theyH@entification field be present for the
"Set Key ldentification” function. It will be igned for other functions. The length field
must always be correct, though.

The "Set Key Identification™ is used for systematttio not want to exchange actual keys
as data, but prefer to keep a table loaded akalsithat case, the key id is the index into
the table.

Note that this does not speak to the encryptioarétgn actually used. The algorithm
strategy must be defined by the implementer.

Configuration Control

The features listed may be made configurable. kamgle, some systems may not
support encryption, while others may allow many saggs to be queued before
acknowledgment. Other systems may require codedages. These should all be
implemented via service levels, not by specifia@apenabling techniques.

Precise Error and Status Reporting

The response codes permit isolation of errors lgleand cleanly. For example, there are
codes for both "Invalid Function" and "Unsupporkadction”. This permits an interface
to query a peer interface to determine what le¥&lmctionality is supported.

Current OpenFox™ Implementation

This section of the specifications is meant to mte\practical examples for the
implementation of the DMPP-2020 protocol in the &f@x™ environment. The

following section will document the specific techne which OpenFox™ uses to provide
reliable, binary object capable communications. DpenFox™ system embraces the
widely accepted standards of communication puhforthe NCIC and NLETS TCP/IP
specifications and therefore implements DMPP-2028 inanner complying with these
national standards. The OpenFox™ system curremiyements DMPP-2020 service
level 1. The system uses the application level askexdgments to reliably deliver
messages, as well as the status checking functionglement an idle line timer. The
OpenFox™ system requires the segmentation of laegsages and an indication of
which, if any, message segments contain image @iaeaOpenFox™ system will require
client data messages to present images in the DEERO+format. The OpenFox™
system does not use the authentication or encrypiiactions specified in service levels
2 and 3 at this time.

Message Header Fields

There are six fields in the extended message heatierh are all used by OpenFox™.
The fields, and the appropriate values, appeambelo

Header LengthThis field is always set to 16 (hexQ@).

Function The functions supported are: (hex)

0001 - Data Message, no ACK, Final Block

0002 - Data Message, ACK requested, Final Block

0003 - Data Message, no ACK, More to Follow

0004 - Data Message, ACK requested, More to Follow

0011 - Positive ACK to data message

0012 - Negative ACK to data message

0021 - Request system status

0022 - Status response

Validation The contents of this field are returfgdOpenFox™.

Data Length This field represents the data lengthraunsigned 32-bit number.
Please note that no single block may be larger @5¢535.

Status The OpenFox™ uses this field as documentdeeiDMPP-2020 spec.
Destination The value is always set to hex 000bwigoing messages, and ignored on
inbound messages.

Keep Alive

The OpenFox™ uses the status request/responséfuteiact as an idle line timer.
OpenFox™ will terminate a connection that has hadgtivity for 60 seconds. To

prevent an idle connection from terminating, clgeate expected to issue a system status
request message before 60 seconds of idle timere€Binmends sending this request
every 45 seconds if no other traffic has been denihg that time. The OpenFox™ will
respond with a ‘system available’ status responsereset the idle timer for the
connection.

Message Segmentation

To maximize resource efficiency at the central aitd to manage a large number of
client connections the OpenFox™ system requiresniegsages larger than 65,535 bytes
be segmented. The term segment and block are ntszdhangeably. If a DSEO-2020
object is present in a message, it must be contpletatained within a single message
segment. Please note that a single message segragicbntain multiple DSEO-2020
objects (so long as their combined size is unde68535 byte limit). A message may be
broken into any number of segments, and each sdgreed not attain the 65,535 byte
maximum. If the function code for a data messagaests an ACK, and is not the final
block, the next block should not be sent until @K for the prior block is received.
Likewise, after sending a final block requestingfdK, the next message should not be
started until the ACK is received. If no ACK is ebeed for a data block within 60
seconds the connection should be closed and a oewection attempted. Any partially
completed message (some blocks sent and ACK’eddill) should be resent in its
entirety upon successful establishment of the remection.

Binary Objects

As documented above, OpenFox™ requires that abluntd and outbound objects be
wrapped in DSEO-2020 format. An object when pregsamgt be completely contained
with a single segment. The status field in the DMI®R0 header should reflect the
content of the block. The two status codes used are

01 Message segment contains no object data
05 Message segment contains at least one DSEOf@f0gatted image

Please note that in the DMPP-2020 specificatiolusteode 01 states “Message may
contain binary object in Unisys format”. Since Oper™ does not support Unisys
formatted objects this code is used to indicatelject is present. OpenFox™ will only
scan segments for DSEO-2020 objects if they hawstiditus code set to 05. OpenFox™
will insure that all segments bound for the peesehine status code set correctly, so the
peer need not scan for DSEO-2020 objects if thensagstatus code is set to 01.

Message Examples
The following are example messages taken fromeadyjsstem TCP/IP trace. First, we'll

look at a status request message. The OpenFoxMeddbe following message from a
client device:

Offset

00000000
00000010

Hex Data

ASCII Equivalent

00000000 00210001 55aa00ff |....L.U... |

The message breakdown is:

FFOOAAS5 Start Pattern

0000001C Message length (total length of thia da¢ssage)

0010 Extended Header length (always 16 - hex 10)

0021 Function - Request system status

31363138 Validation Code - this will be returr{sde response
below)

00000000 Data Length - this is zero for statussages

0021 Status Code - ignored

0001 Destination - ignored

55AA00FF Stop Pattern

This message caused OpenFox™ to reset the idle fiom#his connection, and respond
with the following message:

Offset Hex Data ASCII Equivalent
00000000 ff0Oaa55 0000001c 00100022 31363188U....... "1618|
00000010 00000000 00210001 55aa00ff |.....l..U |

The message breakdown is:

FFOOAASS5
0000001C
0010

0022
31363138
00000000
0021

0001
55AA00FF

Start Pattern
Message length (total length of thia da¢ssage)
Extended Header length
Function - Status Response
Validation Code - echoed from the stedgsest
Data Length - this is zero for statussages
Status Code - Available and ready
Destination - always set to 1
Stop Pattern

The next examples are a data message receivedheoatient, and the ack returned by
the OpenFox™. First, the following message is rekby OpenFox™ (from a client
device):

Offset Hex Data ASCII Equivalent

00000000 ff0O0aa55 00000053 00100002 3231328QU...S....2120|
00000010 00000037 00210001 4645859 2e5251pe7.l..FOXY.RQ.|
00000020 2a484152 52592e4f 4b4f4850 303033BHARRY.INOHPO039|
00000030 2e53442e 4c49432f 33413236 373936R8D.LIC/3A26796.]
00000040 4c49592f 31393939 2e4c4954 2f504393Y/1999.LIT/PCU|
00000050 aaOOff ... |

The message breakdown is:

FFOOAAS5 Start Pattern

00000053 Message Length

0010 Extended Header length

0002 Function - Data message, ACK requested, liloak.

32313230 Validation Code

00000037 Data length - length of the actual ngessiata (from
FOXY to LIT/PC).

0021 Status Code - ignored

0001 Destination - ignored

464F thru 5043 Message Data (text)

55AA00FF Stop Pattern

The OpenFox™ responds with:

Offset Hex Data ASCII Equivalent

00000000 ffOOaa55 0000001c 00100011 3231328QU........ 2120|
00000010 00000000 00010001 55aa00ff |........ U.. |

The message breakdown is:

FFOOAASS

Start Pattern

0000001C Message Length

0010 Extended Header length

0011 Function - Positive ACK

32313230 Validation Code - echoed from the inpassage
00000000 Data length - zero

0001 Status Code (meaningless)

0001 Destination (always 1)

55AA00FF Stop Pattern

The next two examples are a message generateddnFOp™ and sent to a client, as
well as the client's response. First, the followmngssage was sent by OpenFox™ to a
client device:

Offset Hex Data ASCII Equivalent

00000000 ff0OOaa55 000000b4 00100002 00O00OOOQ1IU............ |
00000010 00000098 00010001 4645859 2e2a4841.....FOXY.*HA|
00000020 5252592e 4e434943 20202020 202020RRY.NCIC 1|
00000030 33363731 2031373a 33353a32 32204d38B71 17:35:22 MR|
00000040 49203039 30313831 0d0a464f 585920RM90181..FOXY |
00000050 20202020 20303030 30392031 373a33B5 00009 17:35|
00000060 3a323220 30362f31 362f3230 30300d(a2 06/16/2000..|
00000070 0dOa314c 3031464f 58592c4d 5249448 LO1FOXY,MRIDO|
00000080 39303138 300d0a30 4b304850 3030333®180..0KOHPO039|
00000090 0dOade4f 20524543 41524420 4c4943RINO RECORD LIC/|
OOOO00AO0 33413236 37393620 4c49532f 53440d(BA26796 LIS/SD..|
000000BO 55aa00ff |U... |

The message breakdown is:

FFOOAAS5 Start Pattern

0oooooB4 Message Length

0010 Extended Header length

0002 Function - Data message, ACK requested, fina
block

00000001 Validation Code - should be returneithén
client's ACK

00000098 Data Length - from FOXY to 'CR"LF'

0001 Status Code (meaningless)

0001 Destination (always 1)
464F thru ODOA Message Data
55AA00FF Stop Pattern

The client responded with the following acknowlecgrn

Offset Hex Data ASCII Equivalent

The message breakdown is:

FFOOAAS5 Start Pattern

0000001C Message Length

0010 Extended Header length

0011 Function - Positive ACK

00000001 Validation Code - returned from the CGjoxi™
output

00000000 Data Length - zero

0001 Status Code - ignored

0001 Destination - ignored

55AA00FF Stop Pattern

The examples represent the normal operation ofea Tihe two systems exchange data
messages, and during idle periods the first exawipdéatus request/response is
conducted.

Message ACKs

One final consideration that is not covered ingkamples is that data messages may be
sent with a function code of "0001 - data messagéACK, final block". If the

OpenFox™ sets this value in the function fields ihot expecting an ACK to the
message, and one should not be sent to OpenFoXx®&wise, if a client device sets this
value in the function field, OpenFox™ will honorihd not send an ACK. CPI
recommends the use of the message ACKs for altlatdruser transactions.

Operator Identification

In order to comply with the CJIS Security Policybfished by the FBI, the OpenFox™
system supports the identification of device opmratThis feature is implemented
through the use of the message header from theteesystem.

The system will validate the User ID and reporeeusity violation if the User ID has not
been configured or the user-id is not associatéd tie incoming station.

Input Message Formats

Messages from the trusted server workstation t@gpenFox™ system will be
constructed depending on the destination. Forpduscular type of service the
OpenFox™ system will be configured to support aamications interface called the
‘server’ and either one or all nodes behind therfiate called “‘TDAC’ (Trusted
Destination Address Code).

The header associated with input from these dewvidébe as follows:

TDAC.Reference.UserID.

Where:

TDAC Is the name of the device from which the
message is originating

Reference Is a 10 character alphanumeric field

UserlD The user ID field

Message input from these devices will follow theENIS Format and the NCIC 2000
Format as described below.

The NLETS Format

These messages include all of the valid NLETS MK&Sswell as any State specific
MKE's for which the processing rules are identtoahose of NLETS. They will follow
the NLETS standard message format except thatXfiestatement will be optional. The

input message must contain a list of the detinatiororder for the system to route the
messages.

Following is a description of the NLETS format:
[header.]MKE.ORI.Destinations.Control-Field. TXT(aptal) and text.

Where:

MKE The MKE field is a valid NLETS message key s configured
in the system, if not an error message will lherreed to the
input station indicating 'invalid MKE'. In adaiit, the
incoming session will be checked to see if it thesauthority
to execute the message key. If not an error ageswill be
generated back to originating station indicatimyg
authorized to use MKE'.

ORI The ORI must be the valid State ORI assigoetié
input station. If the ORI is not valid or ifig not
assigned to the originator an error will be neédt.

DEST The destination field is variable in lengtimust be
composed of a valid two character State codevaiid
destination depending on the message type. pheilti
destinations may be specified, in which case thagt be
separated with a comma. The entire field mugags be
terminated with a period.

CTL-FLD The control field is an optional fieldf present the
first character must be an asterisk and musol@ifed by
exactly 10 additional characters. If presentfiblel must be
terminated with a period, if not present nothingst be sent.

TXT This is an optional field and is not required.

TEXT This is the actual text of the message, itasmally
composed of Message Field Code descriptors adabsociated
data. Each field except the last must be terrathwith a
period.

Examples:

[header.]RQ.INO00000O.IL.*1234567890.LIC/ABC123vI2000.LIT/PC

Where:

RQ Message key - registration query for out eté&t
INOOO0000 The ORI

IL The destination State

*1234567890 The optional control field

Text The text of the message comprises the retaanf the

message

The NCIC 2000 Format

These messages will include all of the valid NCid én-State Hotfile MKE's. They will

be routed to the proper destination even thougbséirtation field is not provided. As is
the case with NLET formatted messages, these messag also generate transactions to
other data bases depending on the specific MKE garation. All valid State Hotfiles
database and NCIC 2000 transactions will follows format. The format of the messages
are described below:

[header.]MKE.ORI.text

Where:

MKE The MKE field must be a valid NCIC message kéyot
an error message will be returned to the inpattast
indicating 'invalid MKE'. In addition, the incong
session will be checked to see if it has theaitih
to execute the message key. If not an error agess
will be generated back to originating station
indicating 'not authorized to use MKE'.

ORI The ORI must be the valid State ORI assigoetié
input station. If the ORI is not valid or ifig

not assigned to the originator an error will be
returned.

Text The text portion of the message keys will pomwith
NCIC standards.

Example:
[header.]QV.INOOOOO0OQO.LIC/ABC123.LIS/IN
Where:

FOXY The DAC name

QV The NCIC message key - query vehicle

INOOOOOOO The ORI assigned to the input station
Text The remainder of the message is text: LIC/ABELIS/IN

Output Message Formats

This section will describe output message formatsnly stations utilizing the DMPP
2020 protocol.

The processing header will be used by the recesystem to perform processing related
to grouping and displaying the messages. The foofnidie processing header is as
follows:

TDAC.Reference.Source.MKE.Date/time.

Where:

TDAC Is the name of the device to which the mgesa
addressed

Reference Is a 10 character alphanumeric field as
entered with the original request, it will contéhe
constant UNKNOWN for responses for which theueak
not known or the constant UNSOL if the messagai
administrative message.

Source This field will consist of the OpenFox™ emonic
associated with the source of the message.

MKE This is the response MKE, wherever possibis will
be the same as the request message key, AM for
administrative messages, SM for notificationR, far
error notices.

Date/Time This will be the date and time thatiessage
is being output by the switch, it will have tloemat
YYYYMMDDHHMMSSxx

Where:

YYYY The 4 character numeric year

MM Two character numeric month

DD Two character numeric day

HH Two character numeric hour (military format)

MM Two character numeric minute

XX Two character numeric field representing heualtin of

a second

